a2 United States Patent
Pottlapelli et al.

US009117189B2

US 9,117,189 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR OBJECT LOCK
MANAGEMENT USING CACHED LOCK
OBJECTS

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Murali Pottlapelli, Chino, CA (US);
Yogesh Kumar, Sunnyvale, CA (US);
Vikas Anand, Sunnyvale, CA (US)

(73) Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 98 days.

(21) Appl. No.: 13/974,319

(22) Filed: Aug. 23,2013
(65) Prior Publication Data
US 2015/0058071 Al Feb. 26, 2015
(51) Imt.ClL
GO6F 9/44 (2006.01)
GO6F 15/173 (2006.01)
G06Q 10/06 (2012.01)
GO6F 17/30 (2006.01)
GO6F 11/34 (2006.01)
(52) US.CL

CPC G06Q 10/06316 (2013.01); GO6F 11/3466
(2013.01); GOG6F 17/30171 (2013.01); GO6F
17/30902 (2013.01); HO5K 999/00 (2013.01);
GOGF 2201/865 (2013.01); GO6F 2201/885
(2013.01)
(58) Field of Classification Search
CPCcccue. GOG6F 8/30; GOG6F 8/31; GOGF 8/315;
GOGF 8/34; GOG6F 8/35; GOG6F 8/24; GO6F

Receive request
for object from |~ 302
process.

!

Accass object in
Cache.

Lock object.
Set cbject acquire
time stamp.

!

Update ceche. (~_ 310

!

Serve object fo
process.

[~ 308

[~ 312

11/3466; GOGF 2201/865; GOGF 2201/885;
GOG6F 17/30902; Y10S 707/99938
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,438,594 Bl *
7,020,684 B2 *

8/2002 Bowman-Amuah 709/225
3/2006 White etal. 709/223

7,617,479 B2* 11/2009 Hambrick et al. L T17127
7,669,186 B2* 2/2010 Nolanetal. 717/127
(Continued)
OTHER PUBLICATIONS

Meng Fanbo et al., A Business Process Management System based on
workflow Technologies, IEEE, 2010, retrieved online on May 13,
2015, pp. 168-172. Retrieved from the Internet <URL: http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5693706>.*

(Continued)

Primary Examiner — Thuy Dao
Assistant Examiner — Hanh T Bui
(74) Attorney, Agent, or Firm — Tucker Ellis LLP

(57) ABSTRACT

A system and method for enhancing performance of a busi-
ness process execution engine, utilizing a database, a cache,
and a lock management system operating in cache. The lock
management system, upon receiving a request for a stored
business process instance, determines by accessing the cache
whether stored business process instance is locked and if the
lock s expired. The stored business process object is served to
the business process execution engine if it is not locked or the
lock is expired. The lock functionality is implemented by
writing, rewriting, and/or erasing a companion lock object
stored in the cache such that no database access is required to
determine whether a stored business process instance is
locked.

14 Claims, 5 Drawing Sheets

300

Throw exception
with details of
lock,

~

318

US 9,117,189 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2001/0018689 Al*
2004/0249940 Al*
2013/0212588 Al*
2013/0246622 Al*
2014/0101202 Al*

8/2001
12/2004
8/2013
9/2013
4/2014

Spence et al. 707/103 R
Sohn et al. 709/225
Barabas et al. 718/102
Tlievetal. 709/225
Tlievetal. ..oooovvrennn, 707/781

OTHER PUBLICATIONS

Haris Volos et al., Mnemosyne: Lightweight Persistent Memory,
ACM, 2011, retrieved online on May 13,2015, pp. 91-103. Retrieved
from the Internet: <URL: http://delivery.acm.org/10.1145/1960000/
1950379/p91-volos.pdf?>*

* cited by examiner

U.S. Patent Aug. 25, 2015 Sheet 1 of 5 US 9,117,189 B2

100~ Figure 1 o

. JJ’“\V,‘-‘..
N
External /

Application 130 Network 152
/\j Component
Apphcation 121

Y

Web Seri Component
C? ﬁ?’éﬁl@ Application 122
ient 110a
Component
Web Service ication
Cliont 110b Network 151 Apphcation 123
_ Component
hent 1106 Application 124
i

Y

-l~—--- Component
| | Application 125

;

Dehydration Store 160

External
Application 140

Lock Management
System 162

Cache 164

U.S. Patent Aug. 25, 2015 Sheet 2 of 5 US 9,117,189 B2

Figure 2
200
\ External
Application 130 Network 152
Web Service
Client 110a
ﬂ\xf !
Network 151 _ BPEL Engine 170
Web Service
Client 110b N\
BPEL Runtime
Process 204
Web Service Externat
‘ A T I BPEL Process
Client 110c Application 140 Data 210
Compenent i I
Application 121 201 202
: !
¥ o
Component Y t
Application 122 ¢
3 Dehydration Store 160
Component Lock Management
Application 123 System 162
4 Cache 164
Component
Application 124 220| | 230]
v /,_» atabase 168
Component
Application 125 240

U.S. Patent Aug. 25, 2015 Sheet 3 of 5 US 9,117,189 B2

Figure 3

Receive request
for object from 1~ 302
process. 300

| 5

Access object in
Cache,

~. 304

314

Throw exception
Locked? e Lock Expired? —— with details of
NO lock.

~

316

Lock object.
Set object acquire [
time stamp. i~ 308

l

Update cache. ~_. 310
Serve object to
Process.

S 312

U.S. Patent Aug. 25, 2015 Sheet 4 of 5 US 9,117,189 B2

Figure 4A
BPEL Database JTA Cache LockAndGet | Lockable
480 482 484 486 488 480
401 -
invokedLock AndGetEP) 402
s
Frocess(Lockable) 403
v acquirelLock
404
405 | (ock=true) |
‘ mmmmmmmmmmmmmmmmmmmmmmm
(lnck=true, Lockable)
JPA
406 - Contex
register{object) 482
BPEL Database JTA Cache LockAndGet | Lockable
480 482 484 486 488 480
411 -
invoke{L.ockAndGeiER) (412
Process{lockable) | 413
acquirel.ock
414
415 (lock=false)
,q _______________________
{locck=false, nuil)
418 Dispaicher
'
reschedule() 484
Figure 4B

U.S. Patent Aug. 25, 2015 Sheet 5 of 5 US 9,117,189 B2

Figure 4C
BPEL Database JTA Cache LockAndGet | Lockable
480 482 484 486 488 490
421
E——
JPA
422
— -
afterCompletion{)
423
P
releaselock(}
424 >
put(key, Lockabie)
BREL Database JTA Cache Releasel.ock Lockable
4840 482 484 486 488 490
431
N
JRA
432
- ,
afterCompletion()
433
P
invoke(ReleaselockER) 434
ey o
process{L.ockabie 435
releasel.ock(}

Figure 4D

US 9,117,189 B2

1
SYSTEM AND METHOD FOR OBJECT LOCK
MANAGEMENT USING CACHED LOCK
OBJECTS

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The current invention relates to business process manage-
ment systems and in particular to systems and methods for
objectlock management in a business process execution envi-
ronment.

BACKGROUND

Within large business enterprises, management of business
processes is becoming a more significant issue as companies
vie to improve efficiency, reduce costs, increase profits and
gain more flexible and dynamic infrastructures. Business pro-
cesses are a part of the day-to-day operations and services of
any corporation. For example, a business process may include
applying for a home loan (e.g. loan origination process),
starting a mobile phone service (account initiation process),
hiring a new employee (employee on-boarding process),
building a new jet engine (parts and assembly process), as
well as countless other processes performed by enterprises
and organizations in order to accomplish specific goals.

Processes can range from very simple to highly complex
and sophisticated, involving numerous decisions, tasks and
activities. In this context, a business process can be thought of
as a series of steps (tasks) that are executed in a particular
order or path in order to achieve an objective in an organiza-
tion. A business process can be visualized as a flowchart of'a
sequence of activities. Business processes often change over
time and are useful for analyzing and optimizing the business
model of a particular organization.

Business Process Execution Language (BPEL) is a text-
based (XML) executable language for representing business
processes. It is particularly useful to define business pro-
cesses that use Web Services to interact with other entities.
BPEL can be used as a standard executable orchestration
language to specify interactions with Web Services. BPEL
processes are represented in extensible markup language
(XML) and these processes orchestrate synchronous and
asynchronous services into end-to-end flows.

Business Process Execution Language (BPEL) may be
used for defining how business processes interact with web
services. In some instances, when a BPEL process is being
executed, interaction with an external web service is neces-
sary. Waiting for a response from the external web service or
some other entity may take a significant amount of time, such
as several minutes, hours, or days. When a response is
required, rather than maintaining the BPEL process as active,
it may be more efficient to temporarily suspend processing of
the BPEL process to free memory and/or processing
resources.

To suspend the BPEL process instance, dehydration may
be performed. Dehydration involves data related to the BPEL
process instance being stored in a data storage structure, such

10

15

20

25

30

35

40

45

50

55

60

65

2

as a database residing on a hard drive, until processing is to
resume. Such dehydration may involve all values of variables
of'the BPEL process being stored and an indication of where
inthe BPEL code the BPEL process was suspended. This data
may be stored in the dehydration store. Once a response is
received from the external web service, the BPEL process
instance may be “rehydrated,” such that the values of vari-
ables are reloaded from the data storage structure, and the
BPEL process can continue being processed.

However, where multiple process instances are interested
in the same data, it is important to ensure that the multiple
process instances do not modify the same data object at the
same time. Accordingly it is desirable to provide systems and
methods which prevent conflicting access to data objects
upon rehydration of a BPEL process instance. It would fur-
ther be desirable that the systems and methods have low
overhead with respect to memory, processing, and latency.

SUMMARY

Embodiments of the present invention provide a lock man-
agement system and method which prevents conflicting
access to data objects upon rehydration of a BPEL process
instance.

Embodiments of the present invention provide a lock man-
agement system which prevents conflicting access to data
objects upon rehydration of a BPEL process instance while
having low memory, processing, and latency overhead.

Embodiments of the present invention provide a lock man-
agement system which prevents conflicting access to data
objects upon rehydration of a BPEL process instance from a
cache. Advantageously, lock objects are provided in the cache
itself such that access to an underlying database is not neces-
sary to retrieve the lock object.

In a particular embodiment, the present invention provides
asystem and method for enhancing performance of a business
process execution engine, utilizing a database, a cache, and a
lock management system operating in cache. The lock man-
agement system, upon receiving a request for a stored busi-
ness process instance, determines by accessing the cache
whether stored business process instance is locked and if the
lock s expired. The stored business process object is served to
the business process execution engine if it is not locked or the
lock is expired. The lock functionality is implemented by
writing, rewriting, and/or erasing a companion lock object
stored in the cache such that no database access is required to
determine whether a stored business process instance is
locked.

Other objects and advantages of the present invention will
become apparent to those skilled in the art from the following
detailed description of the various embodiments, when read
in light of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a system that includes
a BPEL composite application and a dehydration store incor-
porating an object lock management system according to an
embodiment of the present invention.

FIG. 2 illustrates an embodiment of a system configured to
dehydrate and rehydrate a BPEL process utilizing an object
lock management system according to an embodiment of the
present invention.

FIG. 3 illustrates a method for implementing lock manage-
ment functionality according to an embodiment of the present
invention.

US 9,117,189 B2

3

FIGS. 4A-4D show sequence diagrams for a system incor-
porating lock management functionality according to an
embodiment of the present invention.

DETAILED DESCRIPTION

In the following description, the invention will be illus-
trated by way of example and not by way of limitation in the
figures of the accompanying drawings. References to various
embodiments in this disclosure are not necessarily to the
same embodiment, and such references mean at least one.
While specific implementations are discussed, it is under-
stood that this is provided for illustrative purposes only. A
person skilled in the relevant art will recognize that other
components and configurations may be used without depart-
ing from the scope and spirit of the invention.

Furthermore, in certain instances, numerous specific
details will be set forth to provide a thorough description of
the invention. However, it will be apparent to those skilled in
the art that the invention may be practiced without these
specific details. In other instances, well-known features have
not been described in as much detail so as not to obscure the
invention.

Common reference numerals are used to indicate like ele-
ments throughout the Figures and detailed description; there-
fore, reference numerals used in a Figure may or may not be
referenced in the detailed description specific to such figure if
the element is described elsewhere. The first digit in a three
digit reference numeral indicates the series of Figures in
which the element first appears.

Although the Figures depict components as logically sepa-
rate, such depiction is merely for illustrative purposes. It will
be apparent to those skilled in the art that the components
portrayed in this figure can be combined or divided into
separate software, firmware and/or hardware. Furthermore, it
will also be apparent to those skilled in the art that such
components, regardless of how they are combined or divided,
can execute on the same computing device or can be distrib-
uted among different computing devices connected by one or
more networks or other suitable communication means.

Embodiments of the present invention provide a lock man-
agement system which prevents conflicting access to data
objects upon rehydration of a BPEL process instance while
having low memory, processing, and latency overhead. In
particular embodiments of the present invention provide a
lock management system which prevents conflicting access
to data objects upon rehydration of a BPEL process instance
from a cache. Advantageously, lock objects are provided in
the cache itself such that access to an underlying database is
not necessary to retrieve the lock object.

FIG. 1 illustrates an embodiment of a system 100 that
includes a BPEL composite application 120 that has been
compiled into JAVA code and is executed as a BPEL runtime
process of BPEL Engine 170. System 100 includes: web
service clients 110a, 1105, 110¢, BPEL composite applica-
tion 120, external applications 130 and 140, and network 151.
System 100 also includes a dehydration store 160 comprising
a cache 164 in addition to a database 166. Cache 164 is a side
non-transactional cache. In an embodiment Cache 164 is
implemented using ORACLE Coherence, an in-memory data
grid solution that enables organizations to predictably scale
mission-critical applications by providing fast access to fre-
quently used data.

Web service clients 110 may be entities (e.g., remote com-
puter systems) that request a web service from BPEL com-
posite application 120. Web service clients 110 may be oper-
ated by users. Web service clients 110 may communicate with

10

15

20

25

30

35

40

45

50

55

60

65

4

BPEL composite application 120 via network 151. While
system 100 is illustrated as having three web service clients
(1104, 1105, and 110c¢), more or fewer web service clients
may be present. For example, BPEL composite application
120 may be executed for one web service client, or tens,
hundreds, or thousands of web service clients. Network 151
may represent one or more public and/or private networks.
Network 151 may represent the Internet. As such, network
151 may allow web service clients 110a, 1105, and 110c¢ to
communicate with BPEL composite application 120. In some
embodiments, one or more of web service clients 110a, 1105,
and 110¢ may communicate with BPEL composite applica-
tion 120 without using network 151.

BPEL composite application 120 may represent a process-
oriented composite application created using BPEL.
Instances of BPEL composite application 120 may be
executed as one or more runtime processes (not illustrated).
For example, each web service client of web service clients
110a, 1105, and 110c¢ may interact with a process being
executed that is based on BPEL composite application 120.
As such, different processes may represent different instan-
tiations of BPEL composite application 120. In some embodi-
ments, BPEL. may be used as part of an ORACLE Service
Oriented Architecture (SOA) for designing, deploying, and
managing composite applications. Processes based on BPEL
composite application 120 may be executed by one or more
computer systems. In an embodiment of the invention, the
computer systems are connected to a dehydration store 160
incorporating object lock management systems and methods
as described herein.

As shown in FIG. 1, a process-oriented composite appli-
cation may include various component applications (in sys-
tem 100, component applications 121,122, 123, 124, and 125
are present) to provide an output or result to some external
application or to a web service client. Each component appli-
cation may perform one or more particular functions, with the
output of one component application serving as an input to
one or more other component applications that are linked.
Such an arrangement may allow for a designer to program in
a declarative nature, that is, allowing the designer to specify
what outputs the composite application should accomplish,
but not how it should accomplish generating those outputs on
the code level. For example, for a designer to create a BPEL
composite application, the designer may use a graphical user
interface to interconnect a series of component applications
in a desired order. The resulting composite application may
then use this combination and order of component applica-
tions to provide an output.

A process-oriented composite application may process
threads for many different web service clients simultaneously
or near-simultaneously (this may also be referred to as mul-
tiple processes of the process-oriented composite application
being executed simultaneously or near-simultaneously). As
such, BPEL composite application 120 may have multiple
associated BPEL processes (also referred to as BPEL runtime
processes) being executed at the same time. For example,
component application 122 may be being executed as part of
a first BPEL process in relation to web service client 110a,
while component application 124 is being executed as part of
asecond BPEL process in relation to web service client 1105.
Further, a single component application may be executed on
behalf of multiple web service clients. For example, compo-
nent application 123 may be executed as part of the first and
second processes in relation to web service client 110a and
web service client 110¢ at the same time. In practice, if a
composite application is serving as a web service for a large
number of web service clients, each component application

US 9,117,189 B2

5

may be being executed as part of BPEL processes linked with
tens or hundreds of web service clients at the same time.

The processing of a request received from a web service
client of web service clients 110 by a BPEL process perform-
ing BPEL composite application 120 may result in the com-
ponent applications 121,122, 123, 124, 125 being performed
in a set order or in a variable order dependent upon the receipt
of'data. Component applications 121, 122, 123,124,125 may
also interact with an external application, such as external
application 130. External application 130 may be operated on
behalf of the same entity or a different entity from the entity
that operates BPEL composite application 120. For example,
external application 130 may be operated by a financial insti-
tution, another company, a different department, etc. For the
instance of component application 123 to proceed, it may
submit a request to external application 130 via network 152.
Thus an instance of a component application may be required
to wait until a response is received from external application
130 before any further processing of the thread.

The timing of the response from external application 130
may be based on the nature of the request. For example, a
database lookup by external application 130 may take a short
period of time, such as less than a second. However, an
approval for a loan that is to be processed by external appli-
cation 130, which may require an employee of the financial
institution to manually review information, may take multiple
days. As such, this may be a point in a BPEL process where
the process is dehydrated until a response is received, thus
freeing memory and/or processing resources while waiting
for a response. Furthermore, another component application
may be simultaneously waiting for a response from a different
external application. The responses may arrive in different
order or simultaneously depending upon when the responses
are transmitted from the external services.

As an example, the instance of component application 124
may require additional information to be provided by the
corresponding web service client. A request may be sent to
the appropriate web service client. Again, processing of a
composite application in relation to the web service client
may halt until a response is received, possibly for a short
period of time, such as 300 milliseconds, or possibly multiple
days or even weeks. This may be another point where the
BPEL process is dehydrated until a response is received in
order to free processing and/or memory resources.

The process of performing the web service process for a
web service client may take a short period of time, such as less
than a second, or may take many hours or days to complete. If
a large number of web service clients are using the web
service provided by instances of BPEL composite application
120 and instances of the composite application within the
BPEL processes take a long period of time to execute from
start to finish, the BPEL processes may result in a large
amount of data being stored and/or processed for web service
clients 110. For periods of inactivity during the processing of
instances of BPEL composite application 120 for particular
web service clients, the associated processing threads (re-
ferred to as processes or BPEL processes) may represent a
waste of processing and/or memory resources. As such, it
may not be efficient to maintain data linked with a BPEL
process in memory local to BPEL composite application 120,
especially if BPEL composite application 120 is handling
requests from many web clients at once and does not have
excess memory to spare. Similarly, it may not be efficient to
maintain BPEL processes in memory if nothing related to the
web service client currently requires active processing. As
such, dehydration of such BPEL processes may be used to
free processing and/or memory resources.

10

15

20

25

30

35

40

45

50

55

60

65

6

As described above, at times during execution of BPEL
composite application 120, it may be desirable to suspend
execution of BPEL composite application 120 or one or more
of components component 121, 122, 123, 124, and 125. For
example, it may be desirable to suspend execution of BPEL
composite application 120 while waiting for responses from
one or more external web services. For example, while
executing a BPEL process instance on activities like mid-
receive where the execution can not be continued in current
transaction, the BPEL engine persists instance state to dehy-
dration store 160.

Persisting an instance state to dehydration store 160 is
referred as dehydration whereas reconstructing instance state
from dehydration store referred as rehydration. In dehydra-
tion, the BPEL Engine 170 persists process instance state to a
storage system, referred to as dehydration store 160. When
the instance is ready to execute (for example a response is
received), the BPEL engine 170 reconstructs the instance
state from dehydration store 160. Dehydration and rehydra-
tion play critical role in determine performance characteris-
tics of BPEL engine, and depend on performance character-
istics of dehydration store 160.

To speedup access to the dehydration store 160, the dehy-
dration store 160 implements a cache 164 in addition to
database 166. Cache 164 is a side non-transactional cache. In
an embodiment cache 164 is implemented using ORACLE
Coherence, an in-memory data grid solution that enables
organizations to predictably scale mission-critical applica-
tions by providing fast access to frequently used data. One
downside of the use of a cache to accelerate data access is that
cache data can get out of synchronization with database 166.
In multi process systems, many processes may attempt to
update the same information at the same time. Out of sync
objects in the cache are referred to as stale objects.

One way to address the issue of stale objects in cache 164
is add a version column to the relational database 166 and a
corresponding version attribute to object in the Cache. In such
asystem, the BPEL engine can check the database 166 and the
cache 164 prior to using the cached object in order to ensure
that the cached object is not stale (i.e. the version of the
cached object is the same as the version of the object in the
database 166). However this method adds overhead and
latency associated with managing version information, and
testing version information by accessing the database.

In embodiments of the present invention dehydration store
160 includes a lock management system 162 which elimi-
nates the added overhead of the version method by imple-
menting a lock mechanism in cache 164. Lock management
system 162 allows only one process to have control of a
particular object in cache 164; another process cannot modify
the same object. Lock management system 162 ensures that
when a process retrieves an object from cache 164 to modify
through a transaction, the cached object is locked until the
transaction is committed to the database 166 or rolled back.
The lock is held until the transaction is complete—thus pro-
viding data concurrency. Although locks can enforce data-
base consistency, they can also create performance problems.
Every time one process issues a lock, another user may be
shut out from processing the locked row or table. Thus, it is
desirable that the locking system and be method be efficient in
avoiding unnecessary locking and releasing locks when war-
ranted.

FIG. 2 illustrates an embodiment of a system 200 config-
ured to dehydrate and rehydrate a BPEL runtime process.
System 200 may comprise BPEL engine 170 operating on
one or more computer systems to execute and/or store various
illustrated modules. For example, BPEL runtime process 204

US 9,117,189 B2

7

may be executed by one or more computer systems of BPEL
engine 170. Each of web service clients 110 may be a separate
computer system. When the execution of the (JAVA) code of
BPEL composite application 120 (that is, the BPEL runtime
process 204 that is an instance of BPEL composite applica-
tion 120) reaches a dehydration point (e.g., a point where a
response from an external application is being waited for),
BPEL runtime process 204 may be dehydrated. Such dehy-
dration may involve data related to BPEL runtime process
204 being stored in dehydration store 160. When BPEL runt-
ime process 204 is dehydrated, certain variables of BPEL
runtime process 204 may be retained when BPEL runtime
process 204 is dehydrated.

FIG. 2 illustrates a single BPEL runtime process being
dehydrated 201 and rehydrated 202. BPEL runtime process
204 may be being executed for a particular web service client,
such as web service client 110c. It should be understood that
numerous BPEL runtime processes may be executed concur-
rently as instances of BPEL composite application 120 for
multiple web service clients. As such, at any given time, one
or more BPEL runtime processes may be being executed and
one or more BPEL runtime processes may be dehydrated in
dehydration store 160.

A trigger is received in relation to BPEL runtime process
204 that initiates rehydration of BPEL process data such that
BPEL runtime process 204 may continue to be executed. For
example, a response from an external application, such as
external application 130, related to BPEL runtime process
204. To rehydrate BPEL runtime process 204, BPEL process
data 210 may be recalled from dehydration store 160. BPEL
process data 210 may be used to rehydrate the BPEL process
for execution by BPEL runtime process 204. Following rehy-
dration of BPEL process data 210, execution of BPEL runt-
ime process 204 may continue. At some future point, BPEL
runtime process 204 may again be dehydrated. BPEL runtime
process 204 may be dehydrated and rehydrated various num-
bers of times as required for execution of the instance of
BPEL composite application 120 as BPEL runtime process
204.

While system 200 of FIG. 2 illustrates a single BPEL
runtime process instance being dehydrated and rehydrated, it
should be understood that many BPEL processes may be at
various stages of execution, dehydration, and rehydration.
For example, it may be possible that tens, hundreds, or thou-
sands of BPEL runtime processes may be at various stages of
execution, dehydration, and/or rehydration of BPEL compos-
ite application 120.

BPEL process data 210 may be created based on BPEL
runtime process 204. The BPEL process data 210 may be
stored using dehydration store 160. Dehydration store 160
may include a storage arrangement such as a tables, stacks, or
databases stored on non-transitory computer-readable media
such as memory, hard drives and the like. Dehydration store
160 may comprise a distributed and clustered system of com-
puters. In an embodiment of the present invention, dehydra-
tion store 160 includes a lock management system 162, a
database 166, and a cache 164. As shown in FIG. 2, BPEL
process data 210 is persisted in dehydration store as a data-
base object 240 and a cached object 220. BPEL process data
210 may remain stored in dehydration store 160 until the
response has been received from the external application that
triggers the rehydration.

Lock management system 162 controls access to objects in
cache 164. When a process attempts to access cached object
220, lock management system 162 examines the lock
attributes of cached object 220 to see if is locked. In an
embodiment of the invention, as shown in FIG. 2, the lock

20

30

40

45

8

attributes of an object 220 are represented by an associated
lockable object 230 stored in cache 164. Cached object 220
and lockable object 230 are associated using an identification
code. If the object 220 is not locked (determined by examin-
ing lockable 230), lock management system 162, locks the
object using lockable 230, sets object with lock acquire time
stamp using lockable 230, updates cache 164 and returns the
object 220 to the requesting process. If the object 220 is
locked, the lock management system 162 examines the lock
acquire time stamp in lockable 230 and lock expiration time
to determine whether the lock has expired. If the lock has
expired, lock management system 162, locks the object using
lockable 230, sets object with lock acquire time stamp in
lockable 230, updates cache 164 and returns the object 220 to
the requesting process. If the object 220 is locked, and the
lock in lockable 230 has not expired, lock management sys-
tem 162, throws an exception with the details of the current
lock and does not provide the object 220 to the requesting
process.

FIG. 3 illustrates a method for implementing the lock man-
agement functionality of lock management system 162 upon
attempted access to an object. In an embodiment of the
present invention, objects in the cache manage exclusive
access to them using EntryProcessor. EntryProcessor is a
mechanism Coherence provides to execute a snippet of code
in an atomic fashion. The following logic may be imple-
mented in EntryProcessor to effect the lock management
functionality upon attempted access to an object:

If object is not locked (Boolean attribute), it locks objects,
sets object with lock acquire time stamp, updates cache
and returns object;

If object is locked, and lock is expired (lock acquire time
stamp plus lock expiration time), it locks objects, sets
object with lock acquire time stamp, updates cache and
returns object; and

If object is locked, and lock is not expired, throws excep-
tion with details of current lock.

The logic addresses the issue of stale objects in the cache
while eliminating a round to the database for version check
and storing of version information.

As shown in FIG. 3, at step 302, EntryProcessor receives a
request for an object from a process on the BPEL engine. At
step 304, EntryProcessor access the cached objects and
retrieves the object’s lock attributes, lockable, lock time
stamp, and lock expiration. At step 306, EntryProcessor
determines if the object is locked. In an embodiment of the
present invention, the lock is implemented as a companion
lock object in the cache. The companion lock object is created
when a lock is acquired, and erased when a lock is released.
Accordingly, in this implementation determining if the object
is locked is performed by determining whether there is a
companion lock object—ifthere is no companion lock object,
the requested object is not locked. At step 306, if the object is
not locked, the method proceeds to step 308. At step 308,
EntryProcessor locks the object (by creating the companion
lock object) and sets the object acquire stamp (in the com-
panion lock object). At step 310, EntryProcessor updates the
cache with the new attributes for the cached object (by writing
the companion lock object to cache—lockable, lock time
stamp). At step 312, EntryProcessor serves the object to the
requesting process on the BPEL engine.

At step 306, if the object is locked (i.e. the companion lock
object to the requested object is found), the method proceeds
to step 314. At step 314, EntryProcessor determines if the lock
is expired by examining the lock time stamp, and lock expi-
ration (in the companion lock object). At step 314, if the lock
is expired, the method proceeds to steps 308, 310,and 312 and

US 9,117,189 B2

9

serves the object to the requesting process on the BPEL
engine. EntryProcessor locks the object and sets the object
acquire stamp (by rewriting the companion lock object to
cache). At step 314, if the lock is not expired, the method
proceeds to step 316. At step 316, EntryProcessor throws an
exception including detail of the lock (lock time stamp, and
lock expiration). The object is not served to the requesting
process.

FIGS. 4A-4D illustrate sequence diagrams for operation of
dehydration store 160 including lock management system
162. In general, a cache can be used as a front end to speedup
access to a database where the database remains the data
system of record. Alternatively, the cache is the data store and
the system of record and there is no backend database. In this
case, the cache should be large enough to hold all the active
data. FIG. 4A shows a sequence diagram for object lookup
during rehydration. FIG. 4B shows a sequence diagram for
object lookup contention during rehydration. FIG. 4C shows
a sequence diagram for dehydration where the transaction
commits. FIG. 4D shows a sequence diagram for dehydration
with transaction rollback.

In the Figures, BPEL 480 is a process running on the BPEL
engine; LockAndGet 488 is a Coherence entity processor that
implements logic for managing object lock; JPA Context 492
is context provided by object to relational mapping storage
framework (in a particular embodiment this is an eclipse
link); JTA 484 is a Java Transaction API to manage transac-
tions (this may be implemented in Oracle Weblogic server);
Dispatcher 494 is a BPEL engine scheduling and execution
implementation that facilitates an asynchronous execution
model, it comprises queues that sequence work and thread
pools that picks next available work and executes.

Lockable 490 is cached object which represents the lock
state of an associated business process instance object. A
particular lockable object is associated with a business pro-
cess instance object in cache because they are both keyed to
the same identification code. Lockable object 490 includes a
Boolean attribute—locked/not locked, as well as a time stamp
for the time of lock acquisition. In a particular implementa-
tion, the Boolean attribute is represented by the presence or
absence of a lockable 490 object with the same identification
code as a requested business process instance object, and the
time stamp is represented by an attribute of the lockable 490
object. In an alternative embodiment, each business process
instance object in the cache may be provided with a compan-
ion lockable 490 object, in which case, the each lockable
object may include two attributes locked/not locked, as well
as a time stamp for the time of lock acquisition.

Referring to FIG. 4A which shows a sequence diagram for
object lookup during rehydration. FIG. 4A shows the execu-
tion sequence for a successful object look up. Upon success-
ful object lookup, the system locks the object, stores it in the
cache, and serves the requested object to the BPEL engine. At
step 401, BPEL 480 requests a business process instance
object from Cache 486. At step 402, Cache 406 implements
the LockandGet entity processor 488. At step 403, Loc-
kandGet entity processor 488 searches for the associated
object Lockable 490. At step 404, no Lockable 490 is found to
be associated with the requested object or, a Lockable 490 is
found but the time stamp indicates the lock has expired—thus
indicating that no current (non-expired) lock exists and there-
fore a lock (or new lock) can be acquired. At step 405, the
LockandGet entity processor 488, transmits the business pro-
cess instance object to BPEL 480. At step 406, BPEL 480
registers the object with JPA Context 492.

Referring to FIG. 4B which shows a sequence diagram for
object lookup contention during rehydration. F1G. 4B shows

10

15

20

25

30

35

40

45

50

55

60

65

10

the execution sequence for an unsuccessful object look up.
The object is already locked and thus the lock cannot be
acquired. The object cannot be served to the BPEL engine and
the request for the object is rescheduled. At step 411, BPEL
480 requests a business process instance object from Cache
486. At step 412, Cache 406 implements the LockandGet
entity processor 488. At step 413, LockandGet entity proces-
sor 488 attempts to acquire a lock on the object by searching
for the associated Lockable 490 object. At step 414, the Lock-
able 490 object is found (indicating that the associated object
is locked), and the time stamp of the Lockable 490 object
indicates that the lock has not expired, thereby indicating that
alock can notbe acquired. Atstep 415, the LockandGet entity
processor 488, transmits an error message to BPEL 480. At
step 416, BPEL 480 transmits a request to dispatcher 494 to
reschedule the request for the object.

Referring to FIG. 4C which shows a sequence diagram for
dehydration where the transaction commits. FIG. 4C shows
the execution sequence for releasing a business process
instance object upon successful completion of a transaction.
At step 421, BPEL 480 transmits the business process
instance object to Database 482. At step 422, JTA 484
responds to BPEL 480 after completion of writing the object
to the database. The business object instance update by the
committed transaction is also written to Cache. At step 423,
BPEL 480 removes the Lockable 490 object associated with
the business process instance object, thereby releasing the
lock on the cached object. At step 424, BPEL 480 writes the
object to Cache 486.

Referring to FIG. 4D which shows a sequence diagram for
dehydration with transaction rollback. FIG. 4D shows the
execution sequence for releasing an object upon rollback of'a
transaction. At step 431, BPEL 480 transmits the object to
Database 482. At step 422, JTA 484 responds to BPEL 480
after failure of writing the object to the database thereby
triggering rollback of the transaction. At step 433, BPEL 480
communicates with Cache 486 which invokes the Release-
Lock entity processor 488 at step 434. At step 435, the Relea-
seLock entity processor 488 resets the lock attributes of the
cached object, by removing the associated Lockable 490
object, thereby releasing the lock.

While methods described above are directed to the use
object lock management in a BPEL system, it should be
understood that a similar method may be applied to other
business-process directed programming languages that are
configured to have processes dehydrated, or, more generally,
other programming languages that are configured to have
processes dehydrated. While the above systems and methods
focus on optimizing BPEL systems using object lock man-
agement, it may be possible to apply similar principles as
detailed herein to perform other compiler optimization in
BPEL.

Appropriate software coding can readily be prepared by
skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software
art. The invention may also be implemented by the prepara-
tion of application specific integrated circuits or by intercon-
necting an appropriate network of conventional component
circuits, as will be readily apparent to those skilled in the art.

The various embodiments include a computer program
product which is a storage medium (media) having instruc-
tions stored thereon/in which can be used to program a gen-
eral purpose or specialized computing processor(s)/device(s)
to perform any of the features presented herein. The storage
medium can include, but is not limited to, one or more of the
following: any type of physical media including floppy disks,
optical discs, DVDs, CD-ROMs, microdrives, magneto-opti-

US 9,117,189 B2

11

cal disks, holographic storage, ROMs, RAMs, PRAMS,
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including
molecular memory ICs); paper or paper-based media; and any
type of media or device suitable for storing instructions and/
or information. The computer program product can be trans-
mitted in whole or in parts and over one or more public and/or
private networks wherein the transmission includes instruc-
tions which can be used by one or more processors to perform
any of the features presented herein. The transmission may
include a plurality of separate transmissions. In accordance
with certain embodiments, however, the computer storage
medium containing the instructions is non-transitory (i.e. not
in the process of being transmitted) but rather is persisted on
a physical device.

The foregoing description of the preferred embodiments of
the present invention has been provided for purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many
modifications and variations can be apparent to the practitio-
ner skilled in the art. Embodiments were chosen and
described in order to best explain the principles of the inven-
tion and its practical application, thereby enabling others
skilled in the relevant art to understand the invention. It is
intended that the scope of the invention be defined by the
following claims and their equivalents.

What is claimed is:

1. A method for enhancing performance of a business pro-
cess execution engine, the method comprising:

persisting a business process instance in a storage system,

wherein the storage system comprises a database, a
cache, and a lock management system operating on one
or more microprocessor, and wherein persisting the
business process instance creates a cached business pro-
cess instance object;

receiving a request for access to the business process

instance from the business process execution engine;

determining, by accessing the cache, whether the cached

business process instance is locked, including

determining if the cached business process instance
object is associated with a lock object stored in the
cache, and if so then accessing the lock object to
determine if a lock has expired; and

determining that the cached business process instance
object is not locked if there is no lock object associ-
ated with the cached business process instance object
or if an associated lock object indicates that the lock
has expired;

serving the cached business process instance to the busi-

ness process execution engine, if the cached business
process instance is not locked; and

if the cached business process instance is locked, then

rescheduling or not serving the cached business process
instance to the business process execution engine.

2. The method of claim 1, wherein said serving step com-
prises:

serving the cached business process instance to the busi-

ness process execution engine, if the cached business
process instance is not locked, and locking the cached
business process instance by creating in said cache a
lock object associated with said cached business process
instance.

3. The method of claim 1, wherein said serving step com-
prises:

serving the cached business process instance to the busi-

ness process execution engine, if the cached business
process instance is not locked, and locking the cached

10

15

20

25

30

35

40

45

50

55

60

65

12

business process instance by creating in said cache a
lock object associated with said cached business process
instance, wherein said lock object includes a time stamp
indicative of the time said lock object was created.

4. The method of claim 1, further comprising:

receiving an update to said cached business process

instance;

persisting an updated business process instance in the data-

base;

copying said updated business process instance to said

cache as a cached updated business process instance;
and

releasing the lock applicable to said cached updated busi-

ness process instance.

5. The method of claim 1, further comprising:

receiving an update to said cached business process

instance;

persisting an updated business process instance in the

cache as a cached updated business process instance;
and

releasing the lock applicable to said cached updated busi-

ness process instance.

6. A non-transitory computer readable storage medium
including instructions stored thereon which, when executed
by a computer, cause the computer to perform a method
comprising the steps of:

persisting a business process instance in a storage system,

wherein the storage system comprises a database, a
cache, and a lock management system operating on one
or more microprocessor, and wherein persisting the
business process instance creates a cached business pro-
cess instance object;

receiving a request for access to the business process

instance from the business process execution engine;

determining, by accessing the cache, whether the cached

business process instance is locked, including

determining if the cached business process instance
object is associated with a lock object in the cache,
and if so then accessing the lock object to determine if
a lock has expired; and

determining that the cached business process instance
object is not locked if there is no lock object associ-
ated with the cached business process instance object
or if an associated lock object indicates that the lock
has expired;

serving the cached business process instance to the busi-

ness process execution engine, if the cached business
process instance is not locked; and

if the cached business process instance is locked, then

rescheduling or not serving the cached business process
instance to the business process execution engine.

7. The non-transitory computer readable storage medium
of claim 6, wherein said serving step comprises: serving the
cached business process instance to the business process
execution engine, if the cached business process instance is
not locked, and locking the cached business process instance
by creating in said cache a lock object associated with said
cached business process instance.

8. The non-transitory computer readable storage medium
of claim 6, wherein said serving step comprises:

serving the cached business process instance to the busi-

ness process execution engine, if the cached business
process instance is not locked, and locking the cached
business process instance by creating in said cache the
lock object associated with said cached business process
instance, wherein said lock object includes a time stamp
indicative of the time said lock object was created.

US 9,117,189 B2

13

9. The non-transitory computer readable storage medium

of claim 6, wherein the method further comprises:

receiving an update to said cached business process
instance;

persisting an updated business process instance in the data-
base;

copying said updated business process instance to said
cache as a cached updated business process instance;
and

releasing the lock applicable to said cached updated busi-
ness process instance.

10. The non-transitory computer readable storage medium

of claim 6, wherein the method further comprises:

receiving an update to said cached business process
instance;

persisting an updated business process instance in the
cache as a cached updated business process instance;
and

releasing the lock applicable to said cached updated busi-
ness process instance.

11. A system for enhancing performance of a business

process execution engine, the system comprising:

a storage system, including a database and a cache,
wherein the storage system is adapted for persisting a
business process instance by creating a cached business
process instance object and a database business process
instance object; and

a lock management system operating on one or more
microprocessor of the system wherein the lock manage-
ment system is adapted to perform the steps of,

receiving a request for access to the business process
instance from the business process execution engine,

determining, by accessing, the cache whether the cached
business process instance is locked, including
determining if the cached business process instance
object is associated with a lock object stored in the
cache, and if so then accessing the lock object to
determine if a lock has expired, and
determining that the cached business process instance
object is not locked if there is no lock object associ-

10

20

25

30

35

14

ated with the cached business process instance object
or if an associated lock object indicates that the lock
has expired,
serving the cached business process instance to the busi-
ness process execution engine, if the cached business
process instance is not locked; and
if the cached business process instance is locked, then
rescheduling or not serving the cached business pro-
cess instance to the business process execution
engine.
12. The system of claim 11, wherein said serving step
comprises:
serving the cached business process instance to the busi-
ness process execution engine, if the cached business
process instance is not locked, and locking the cached
business process instance by creating in said cache a
lock object associated with said cached business process
instance.
13. The system of claim 11, wherein said serving step
comprises:
serving the cached business process instance to the busi-
ness process execution engine, if the cached business
process instance is not locked, and locking the cached
business process instance by creating in said cache a
lock object associated with said cached business process
instance, wherein said lock object includes a time stamp
indicative of the time said lock object was created.
14. The system of claim 11, wherein said lock management
system is further adapted to perform the step of:
receiving an update to said cached business process
instance;
persisting an updated business process instance in the data-
base;
copying said updated business process instance to said
cache as a cached updated business process instance;
and
releasing a lock applicable to said cached updated business
process instance.

#* #* #* #* #*

